If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2=5
We move all terms to the left:
4r^2-(5)=0
a = 4; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·4·(-5)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*4}=\frac{0-4\sqrt{5}}{8} =-\frac{4\sqrt{5}}{8} =-\frac{\sqrt{5}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*4}=\frac{0+4\sqrt{5}}{8} =\frac{4\sqrt{5}}{8} =\frac{\sqrt{5}}{2} $
| 23=5b-12 | | x/5x2=50 | | X/2-x/3-3/3=1 | | 6(b+5)=78 | | 3(2m-3)=-33 | | x^2-6=5+9 | | x^2+18x=4x−49 | | 6=22-4b | | 1/5=25k | | -4x+3x+-3=-2 | | 0.9z+8.5=1.5(2+2z) | | 3p+20=8 | | 0.9z+825=1.5(2+2z) | | b-30.45=95.28 | | n^2-13n+56=8+n | | |n-9|=13 | | 40=0.4x^2 | | 7y^2-19y=6 | | 4(z+15)=88 | | 12+x+15=90 | | 0.9z+9.25=1.5(2+2z) | | n^2+4n=1+4n | | 1=y/10-1 | | 4x3.5=12.5 | | 6x-5=x+8=2x-3 | | c+6=0 | | 3x=−24 | | u-4.2=2.98 | | 4(x+4)+6x+14=180 | | -6x-8+10x=-8+4x | | 3x−8=22−2x | | -7.4=5.4+y |